H(t)=-16t^2+25t+20

Simple and best practice solution for H(t)=-16t^2+25t+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t^2+25t+20 equation:



(H)=-16H^2+25H+20
We move all terms to the left:
(H)-(-16H^2+25H+20)=0
We get rid of parentheses
16H^2-25H+H-20=0
We add all the numbers together, and all the variables
16H^2-24H-20=0
a = 16; b = -24; c = -20;
Δ = b2-4ac
Δ = -242-4·16·(-20)
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{29}}{2*16}=\frac{24-8\sqrt{29}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{29}}{2*16}=\frac{24+8\sqrt{29}}{32} $

See similar equations:

| 3^2a+1=64 | | 2b+100=2b | | (1/10)(x+50)=-3x-13+4x | | 9x+26=152 | | x0.1=1.8 | | 3.x+1=37 | | 3x+5=18-1 | | 10m−40=6m−16 | | 3=4+a/2 | | 4(3x+5)=12(x-3) | | 13x+6=16x-3 | | n-14=-30 | | 9(-x+3)=45 | | 0=15+x | | a-21=63 | | g+43=102 | | 30=50-b | | 1/2(x)=2x-6 | | 2=p÷5 | | 22=61-m | | 54=65-m | | 2h/5=5 | | 93=74+f | | 7x=0+9 | | 84+n=116 | | u+78=82 | | 26+j=83 | | 12^(2x+3)=15 | | -16X2+46x+6=0 | | 4x-3(9+5x)=11-3x | | a+93=121 | | 3x^2+2x+7=2x+5 |

Equations solver categories